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ABSTRACT

For the problem if discriminating between two simple
hypotheses about a normal mean, a sequential test procedure
carried out in two phases is proposed. Read's partial sequential
probability ratio test can be studied as a special case of the pro­
posed procedure.

INTRODUCTION

Wald's (1947) sequential probability ratio test (SPRT) for
testing a simple hypothesis Ho : Il = Ilo against a simple alternative
HI : Il = Ill' III > Ilo about a parameter Il has a drawback in that
if Il is between Ilo and Ill' the average sample number (ASN) may
even be higher than the sample-size of a fixed-sample test having
the same error probabilities. To overcome this defect, Read (1971)
introduced the partial sequential probability ratio test (PSPRT)
in which an initial fixed number n of observations is followed by
Wald's SPRT procedure. Read's computations show that at least
for the problem of testing a normal mean with known variance,



the ASN of the PSPRT at IJ = IJ* = (Po + IJI )/2 is substantially
less than the corresponding ASN.of the SPRT for preassigned er­
ror probabilities.

Here is an attempt to generalize Read's idea. Instead of
drawing a fixed sample prior.to the Wald's SPRT, we draw obser­
vations sequentially with diverging boundaries, and this is the first
phase of the proposed two-phase procedure. After n observations,
if the procedure is not terminated till then, Wald's SPRT is started
in the second phase with upper and lower boundaries equal res­
pectively to the upper and the lower boundary points in the
starting of the test procedure. Also, at the nth stage of sampling if
the sample-path stays below the Wald's line of acceptance or above
the Wald's line of rejection, decisions are made accordingly. For a
finite n, if the boundaries in the first phase diverge to infinity, the
proposed test-procedure takes the form of a PSPRT.

Although the procedure will be discussed as a generalization of
the PSPRT, the aim and objective of the discussion is no more
than establishing that if the Wald-boundaries are broken at some
point of the sample number axis and if prior to that some other
continuation region with either converging or diverging lines is
used, the maximum ASN can be lowered substantially, and in fact,
only a special case of this phenomenon was established by Read
(1971) in his PSPRT.
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1. The Procedure

Let Xj , X2, ... be a sequence of independently and identical­
ly distributed random variables following the normal law with un­
known mean IJ and variance unity. Consider the problem of testing
Ho : IJ = lJo versus HI: IJ = IJI' IJI > lJo'

Replacement of the observations x by (x - IJ *) gives

(1.1 )

where 6. == IJI - lJo , Pij is the joint likelihood of the first j-obser­
vations prior to the aforesaid transformation under ·Hi> i = I, 2
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Now, Wald's SPRT consists in drawing observations sequential­
ly according to whether
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and Yj =

A TWO PHASE SEQUENTIAL

j
~ Xi·

i =1

C2 < Yj < C1

3

(1.2)

• or not, for any j and for c2 < 0 < c1. If at any stage-j , (1.2) is
violated on either side, the sampling is terminated, H1 is accepted
if Yj ~ c1 while Ho is accepted if Yj ~ c2·

The proposed two-phase SPRT Tn, 81, 82 is defined as fol­
lows: Given an integer n , angles 81, °2 , (00 < 8i < 90 0

, i = 1,
2) and boundaries c1 and c2' c2 < 0 < c1 , observations are
drawn according to whether

,
•

or not, where
j + 1 . .

ai (j) = {Ci + (-1) J tan 8j, 1 = 1, 2, j < n

ej i = 1,2, j ~ n

(1.3)

(1.4)

•

If at any stage (1.3) is violated the experimentation stops with
acceptance of H, if the left inequality is violated, otherwise with
acceptance of H1 ifthe right inequality is violated.

For 81 and82 equal to 00
, Tn, °1 , 82 is nothing but Wald's

SPRT and for,8 1 and 82 -+ 90 0 what we get is Read's PSPRT.

To calculate the' operating characteristic (OC) and the ASN
functions, we replace Yj: j = 1,2, ... by an analogous x(t), 0 < t
< .. , t being In the' continuous sense (cf. Anderson (1960)).
X(t) is a Weiner stochastic process with mean Ilt and variance t.
In the first phase of sampling the process X(t) has the continua-

. tion region bounded by the upper line Y = c1 + d1t, and the
lower ~e Y = <;:2 + d2t, in the (t, X(t)) plane, where
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d l = tan 81
d2 = - tan 82

} (1.5)

2. The OC Function

Let L(Il) be the probability of accepting H, at the parameter •
point u, We can write

(2.1 ) •
where L l (Il) is the probability that X(t) ~ c2 + d2t for some
t ~ n which is smaller than any t for which X(t) ~ cl + d l t;
L2(Il) is the probability that X(n) € [C2 + d2n, c2] given that
X(t) € (c2 + d2t, cl + d l t) for all t < n; L3(1l ) is the probability
that X(n ~ c2 for some t > n given that X(t) € (c2 + d2t, cl +
d l t) for all t ~ n.

Ll (u ) can be obtained from Anderson's (1960) equation (5.5),
which after interchanging 6 1 , 15 1) with (-r2' - 152) where
1'i = Ci, 15i = di - Il, i = 1,2 gives ..

i {e- 2 [r1'l - (r+ l)1'21 [r15 1 - (r+ 1)021
r =0

- 02n - 2ryl + (2r + 1h2 )
• <Il ( ----------

-r:
2 2

+ e- 2 [r 1'1 °1 + r 1'282 - r(r + 1) 1'2 151 - r(r - 1) 1'1 °21

02n - 2ryl + (2r + 1)1'2 )
•<Il ( ---------

.;n
2 2

-2 [(r + 1) 1'101 + [r + 1) '¥2152 - r(r + 1) 1'2°1
-e
- (r+ 1) (r+ 2) 1'1°21

'<Il ( -15 2n - 2(r + Ihl + (2f + Ih2 )

.;n

,
•
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(2.2)

where <I> (x) is the unit normal c.d.f.

Again, Anderson's (1960) theorem (4.2) gives the probability
PI (n, x) of crossing the upper line first before crossing the lower
line up to and including the first n observations given that
X(n) = x ~ ci + dl n. Similaly, it gives the probability P2(n, x)
of crossing the lower line first before crossing the upper line up to
and including the first n observations given that X(n) = x ~ c2 +
d2n. Clearly,

P(n, x) = 1 - PI (n, x) - P2(n, x), hz < C2 ~ x ~ Cl < hI ,
(2.3)

gives the probability that the process crosses neither the upper line
nor the lower line up to and including the first n observations,
where hi =Ci + din, i =1,2. So we get

dx 2.4)

•
where

2
P(n, x) = 1 - L L

i=l r=1

l (-1 ) j + lev ij + x U ij

j = I

Uij = - 2 {r(Ci'- Ci) - (2 - j) ci'}!n,

(2.5)



6 H.K.BARUAH

•

•

for i' = 1 + i (mod 2)

which ultimately leads us to

c2 - n/J h2 - n/J
L2 (/J) = <P ( vn )- <P ( vn )

•
•

2 2. 1
~ ~ ~ (-I)J+

i=1 r=1 j=1

• {<P (
h2 - n/J - nUij

)-<P( )}
vn

(2.6)

Next, let (P(x) be the probability of accepting the null hypo­
thesis given that the procedure initially starts at some point x.
For the problem of testing a normal mean, (cf. Billard (1973),
Read (1971» Wald's (1974) expression for the OC gives us

••

where c1' c2 (c2 < 0 < c1) are Wald's boundaries.

exp (-2/Jc1) - exp (-2/Jn)
P(x) =

. exp (-2/Jc1 ) - exp (-2/J c2)
, /J =f /J* (2.7)

•

and

As it is customary to have sampling plans with

Prob. (H, will be rejected) ~ a for /J = /Jo

Prob. (H, will be accepted) ~ (3 for /J = /J 1

(2.8)

for given errors a and (3 , we shall be concerned with examining
Tn' ~1, ~ 2 with respect to the ASN's at /J 0' /J * and /J 1 for pre-as-



signed errors and hence we exclude the case p. = p.* while discus­
sing about the OC function, although it can be very easily found
out using L'Hospital's rule.

Clearly,

•

•
•
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Cl
L3(P.) = J pen, x) • p(x) • __1__ e

C2 -J'[nvo

(2.9)

Using

6i = (Ci - nu) / VO , i =1, 2

and

f(t) =exp {(nt2 + 2nt p.)/2 }

(2.9) can be simplified to

7

(x- np.)2

2n d x

•
• (e- 2P. C l _e- 2 P. C

2 ) . L3 ( p.) = e- 2
P.

c
l {<I>(6

1
) -

•
2 00

- ~ ~
i= 1 r= 1

f (-l)j + 1 • { eVij - 2p.cl f(uij)
j = 1

~

"

I"
(2.10)
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Finally, the OC at p. can be obtained using (2.1). It can be

seen that when 81 and 81 ~ 90° in the limit, (2.1) reduces to
Read's (1971) equation (3.5).

3. The ASN Function

With m as the decisive sample number (DSN) of Tn, 81,8 2 and •
q(m) as the probability mass function of m, the ASN will be given
by

n
E(p.) = ~ mq(m) + ~ m'q (m' + n)

m=1 m'=1

+ n ~ q(m' + n)
m ' = 1

(3.1 )

•

n
~ mq(m) = E1 (u )

m = 1

where m' =m -n • Let

(3.2) ••
so that E1 (u) is the average of the DSN up to and including the
first n observations. Hence,

n
~ mq(m) + n ~ q(m' + n) = E1 (p.)

m=1 m'=1

+ n • Prob (m ~ n)
(3.3)

together constitute the ASN function of an Anderson-type proce­
dure with diverging boundaries. In Anderson's notations

(3.4)

where e 1* is the contribution to the ASN in the sense that the up-

..
,t

..
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• per line was crossed first and €2 * is the contribution to the ASN in
the sense that the lower line was crossed first, that is,

•
•

1 £ {[e-2 [(r+ 1)11 - I'Y2] [(r+ 1) 81 - r8 2 ]

81 r = 0

.eIl ( 81n + 2r'Y2 - (2r + 1) 'Yl )

-r:

••
[(2r + 1)1

- 81n + 2f'Y2 - (2r + 1hi ) ]
• ell (----"-----::.-------

vn
-2 [(r + 1)2 11 81 + (r + 1)2 12 82

- 2r'Y2] - [e

•
f

•

81n + 2(r + 1) 'Y2 - (2r + 1) 'Yl )
ell (--=-----.::......----~

v'n

.... ( -8 1n + 2(r +1) 'Y2 - (2r + 1) 'Yl'*" _-=---_--:...._..:......:.:::.....-~ _ __._.:~)] • [(2r + 1) 'Yl

..;n

- 2(r + 1) 'Y2l} ,8 1 =1= 0 •

(3.5)
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Interchanging ('Y1' 61) with (-'Y2 -62) in (3.5) €2* can be ob­
tained.

In Section 2, L1(IJ) was defined as the probability that X(t)
~ c2 +¥t for some t ~ n which is smaller than any t for which
X(t) ~ c1 + dj r , In the expression Of L1(IJ) (equation 2.2) in-
terchanging ('Y1' 6t> with (-'Y2, - 62) we obtain the probability •
L{ (Ji) that X(t) ~ c1 + d1t for some t ~ n which is smaller
than any t for which X(t) ~ c2 +d2t ,_ It can be seen that (cf.
Anderson (1960» •

, .
I - L1 (IJ) - L1(IJ) = Prob(m ~ n) (3.6)

The second term in (3.1) is the average of the additional obser­
vations required for a decision after n observations, given that the
experimentation does not terminate prior to that. With n(x) as the
average number of observations required for termination of
sampling given that the procedure starts initially at some point x,
we obtain

, C1 I •~ m'q(m ... n) = f pen, x) • n(x) •
m'= 1 c2 v'21f vn •

(x - nlJ)2
• e 2r

dx =E2 (1J ) , say (3.7)

1

•

•

(3.8)

This gives,

For the problem of testing a normal mean (cf. Billard (1973),
Read (1971» Wald's (1947) expressions for the ASN give

,=1 { (C1 -c2)exp(-2IJx) - C1exP(-4IJC2) + c2exp(-2IJC1) ~

IJ exp(-2 IJ c1) - exp(-2IJC2)

-x},IJ=I=IJ*n(x) =
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£2(11) = f 1G2 - f2 Gl + ~ "g
11

11

•
•

2 00 2 J'+I
1) { (G Vij G'

- ~ ~ ~ (- "f1 2e + 2" f(Uij - 211»
i=l r=l j=1

v.. ,
- f2 (G1"e IJ + G] " f(Uij»

+ YO (eZij l _eZij2) + ...rn " f(Uij)"g'} ,
11~ 11

and

*for 11 =1= 11 (3.9a)

••

•
•

•

_ ~ £ ~ (-l)j+ 1 {,e(Vij + nufj)/2
i=l r=1 j=l

- [<I> (fd - <I> (f2)] " [...rn «cl + c2) - 2nUij)]

+ f l" n <I> (fd - f2" n <I> (f2)} ,for 11 =11 * (3 .9b)

where

rl = (ci -c2)/(1l x2)

r2 = n + Xl /(IlX2) ,
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t::.~ .= t::.x - Uij 6 ' x = 1, 2
2

Zijx = Vij - tix /2, x = 1, 2 ,

-I.~

Finally, (3.1) givesus the ASN. As () I and () 2 tend to 900 in the
limit, (3.1) leads us to Read's (1971) equations (4.1) and (4.3) ac­
cording as /J =t= /J * or /J = /J * .

Xl

X2

GI

G2

G~

g
,

g

r,

and

= ci exp (-2/J ci) - c2 exp (-2/J cI) ,

= exp (-2/J cI) - exp( -2/J c2) ,

,., ')= <I> (t::. l ) - <I> (t::.2) , G I = <I> (t::.d - <I> (t::.2 '

= <I> (t::.l + 2/J yn) - <I> (t::.2 + 2/J6),

= <I>(t::.; + 2/Jyn) - <I>(b.2+2/Jyn) ,
. I

= <I> (t::.d - <I> (t::.2) ,
, ,

= <I> (t::. l ) - <I> (t::.2) ,

= (c, - nUij)/yn , x = 1,2,
2

1 - x /2
<I>(x) = -- e

..;2ir

•
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4. NUMERJCAL RESULTS AND DISCUSSiONS

Read (1971) has shown that at least for the case of testing a
normal mean, if an initial fixed-sample is followed by an Wald's
SPRT, the ASN at J.J.* can be considerably reduced. Our aim was
to examine the effect on the ASN at at /J * by replacing the fixed­
sample in the Read's PSPRT with a sequential plan with diverging
boundaries.

Preliminary computations show that the OC at /Jo is reduced
when the Wald-lines are replaced by certain Te , () I, ()2 boundaries.
To make a meaningful comparison of the ASN's of the present
procedure with those of other existing procedures, the first and
the second kinds of error of the respective procedures should be

• ,

•



same. For b. =0.20, n = 100 (20) 200 and for integral values of
0(=0 1 =(2 ) the equation

was solved by Regula-Falsi for c (= c1 = -c2) so that the nominal
errors 0/.' and B' are equal to 0.05. Some of the computed values
are presented in table-I below.

From table-l we may note that with the same n as the opti­
mal PSPRT both at Il * and at Il o (or Ill) the ASN's could be made
lower by using the proposed two phase procedure. Also, these
computed values establish that the two-phase procedure has the
property of reducing the ASN at J.l * considerably; it can be ob­
served that for certain combinations of the parameters 0 and n,
the ASN's at J.l * as well as at J.lo are smaller than the respective va­
lues attainable by even the optimal PSPRT procedure. Again a de­
tailed analysis of Anderson's computed values (Table-I of Ander­
son's (1960) paper) reveals that the probabilities of continuation
of the Anderson's procedure with converging lines after the points
of truncation are so small that further contributions towards the
ASN's will be negligible even if the procedures are continued using
Wald-type boundaries after the points of truncation. Thus it can
be stated that reduction of the maximum ASN in a two-phase
SPRT with either converging or diverging boundaries in the first
phase followed by Wald's SPRT in the second phase, is an inher­
rent feature of the test procedure and actually only a special case
of this phenomenon was established in Read's PSPRT.

Further computations with different ranges of n for different
integral values of 0 show that the minimum ASN at Il * occurs at 4
degrees after which the ASN at Il * shows slow increase to Read's
value as 0 increases. And, as expected, the ASN at Ilo (or Ill) in­
creases from Wald's value as e increases. Table-2 below shows the
minimum attainable ASN at Il * for various 0 values and the cor­
responding ASN's at Ilo .

..

..
•

••
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L(llo) =0.95

13

(4.1)
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Table '1.

Minimum Attainable ASN's at p.*, corresponding ASN's at
p.o (or P.l) and the appropriate combinations of c and n

For 9 = 0°(1 °)6° ,6= 0.20 and a' = ~' = 0.05

15

.. 9
(in degreesJ c

• 0(*) 14.720
1 13.754
2 13.097
3 12.657
4 12.368
5 12.266
6 12.212

n

165.0
159.0
154.0
150.0
144.0
140.0

ASN(p.*J (ASN(p.oJ

216.70 132.50
210,01 139.06
206.15 139.08
204.27 140.61
203.62 142.98
203.68 145.31
204.09 147.66

•'.

•

•

(*values computed using Wald's expressions)

The minimum attainable ASN at p. * should therefore be available
around 9 = 4 degrees. But further computations reveal that the
change is negligible.
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